

+46 33 16 57 11, richard.dawson@sp.se

Handled by, department Richard Dawson Energy Technology 2008-11-03

Reference

P804625 02D

Page 1 (3)

KINGAS Priekulu pag Cesu rajons LV-4126 LATVIA

Determination of air permeability and water tightness and resistance to wind load

Test object

Manufacturer: KINGAS

Type: Balcony door with aluminium

cladding

Size: 885 x 2085 mm

Condition at arrival: No visible damage

Date of arrival: 2008-10-14 Date of testing: 2008-10-20 SP's serial number: 999

Water tightness according to SS-EN 1027 metod A up to 600 Pa (see attached pictures)

Point A: Leakage between frame and sash Leakage degree 1 after one minute at 150 Pa Leakage degree 0 200 Pa

<u>Point C: Leakage between frame and sash</u> Leakage degree 1 after one minute at 450 Pa Point B: Leakage infill joint corner Leakage degree 2 after two minutes at 300 Pa Leakage degree 3 after two minutes at 600 Pa

Leakage grading

0 No leakage 3 Minor run 1 One or a few drops 4 Minor flow 2 Several drops 5 Considerable flow

Resistance to wind load according to SS-EN 12211 class 3

Test with repeated pressure change up to 600 Pa and storm resistance up to 1800 Pa

No damage noted.

SP Technical Research Institute of Sweden

Deformation test up to 1200 Pa

Pressure, Pa	Deflection, mm	
	LHS vertical sash member (measurement length = 1950 mm)	RHS vertical sash member (measurement length = 1950 mm)
0	-0,2	-0,1
1200 positive pressure	0,3	0,2
1200 negative pressure	-0,8	-0,4

The maximum relative frontal deflection was 0,31 per mille (requirement: <3,3 per mille according to SS-EN 12210 class C)

Air permeability

Testing according to SS-EN 1026 up to 600 Pa

After windloading: Testing according to SS-EN 1026 up to 600 Pa

Conditions of test

Equipment used:

The test results refer only to the tested object.

#1 #1 #1

200746

Estimated error margin: Air pressure difference ± 2 Pa, air flow ± 5 % and

deformation (wind load) ±0,1 mm

Test climate: Air temperature 22 °C, RH 40 %, air pressure 980 hPa

Water temperature: According to the standard

Conditioning: Laboratory climate after arrival to SP

SP Technical Research Institute of Sweden
Energy Technology – Building Physics and Indoor Environment

Hans Brolin Technical Manager Richard Dawson Technical Officer

Test rig invnr 202206 and measuring equipment invnr

Handled by, department Richard Dawson Energy Technology +46 33 16 57 11, richard.dawson@sp.se 2008-11-03

Reference P804625 02C Page 1 (5)

1002 ISO/IEC 170

KINGAS Priekulu pag Cesu rajons LV-4126 LATVIA

Determination of air permeability and water tightness and resistance to wind load

Test object

Manufacturer: KINGAS Type: Balcony door wood Size: 885 x 2085 mm

Condition at arrival: No visible damage

Date of arrival: 2008-10-14 Date of testing: 2008-10-21 SP's serial number: 998

Water tightness according to SS-EN 1027 metod A up to 600 Pa (see attached pictures)

Point A: Leakage between frame and sash Leakage degree 2 immediately at 100 Pa Leakage degree 3 immediately at 300 Pa Leakage degree 4 immediately at 600 Pa

Point B: Leakage between frame and sash Leakage degree 2 after one minute at 100 Pa Leakage degree 3 immediately at 200 Pa Leakage degree 4 immediately at 600 Pa

Leakage grading

0 No leakage

3 Minor run

1 One or a few drops

4 Minor flow

2 Several drops

5 Considerable flow

Resistance to wind load according to SS-EN 12211 class 3

Test with repeated pressure change up to 600 Pa and storm resistance up to 1800 Pa

No damage noted.

SP Technical Research Institute of Sweden

Deformation test up to 1200 Pa

Pressure, Pa	Deflection, mm	
	LHS vertical sash member (measurement length = 1950 mm)	RHS vertical sash member (measurement length = 1950 mm)
0	0,3	0,5
1200 positive pressure	0,6	0,8
1200 negative pressure	-0,2	0,1

The maximum relative frontal deflection was 0,24 per mille (requirement: <3,3 per mille according to SS-EN 12210 class C)

Air permeability

Testing according to SS-EN 1026 up to 600 Pa

After wind loading: Testing according to SS-EN 1026 up to 600 Pa

Conditions of test

The test results refer only to the tested object.

Equipment used: Test rig invnr 202206 and measuring equipment invnr

200746

Estimated error margin: Air pressure difference ± 2 Pa, air flow ± 5 % and

deformation (wind load) ±0,1 mm

Test climate: Air temperature 19 °C, RH 45 %, air pressure 980 hPa

Water temperature: According to the standard

Conditioning: Laboratory climate after arrival to SP

SP Technical Research Institute of Sweden
Energy Technology – Building Physics and Indoor Environment

Hans Brolin Technical Manager Richard Dawson Technical Officer